
and θ = tan−1 3.1
1.5 = 64° from the tangent to the circle. See Figure 4.23.

Figure 4.23 The tangential and centripetal acceleration

vectors. The net acceleration a→ is the vector sum of the two

accelerations.

Significance

The directions of centripetal and tangential accelerations can be described more conveniently in terms of a polar
coordinate system, with unit vectors in the radial and tangential directions. This coordinate system, which is used
for motion along curved paths, is discussed in detail later in the book.

4.5 | Relative Motion in One and Two Dimensions

Learning Objectives

By the end of this section, you will be able to:

• Explain the concept of reference frames.

• Write the position and velocity vector equations for relative motion.

• Draw the position and velocity vectors for relative motion.

• Analyze one-dimensional and two-dimensional relative motion problems using the position and
velocity vector equations.

Motion does not happen in isolation. If you’re riding in a train moving at 10 m/s east, this velocity is measured relative to
the ground on which you’re traveling. However, if another train passes you at 15 m/s east, your velocity relative to this other
train is different from your velocity relative to the ground. Your velocity relative to the other train is 5 m/s west. To explore
this idea further, we first need to establish some terminology.

Reference Frames
To discuss relative motion in one or more dimensions, we first introduce the concept of reference frames. When we say an
object has a certain velocity, we must state it has a velocity with respect to a given reference frame. In most examples we
have examined so far, this reference frame has been Earth. If you say a person is sitting in a train moving at 10 m/s east,
then you imply the person on the train is moving relative to the surface of Earth at this velocity, and Earth is the reference
frame. We can expand our view of the motion of the person on the train and say Earth is spinning in its orbit around the
Sun, in which case the motion becomes more complicated. In this case, the solar system is the reference frame. In summary,
all discussion of relative motion must define the reference frames involved. We now develop a method to refer to reference
frames in relative motion.

Chapter 4 | Motion in Two and Three Dimensions 189



Relative Motion in One Dimension
We introduce relative motion in one dimension first, because the velocity vectors simplify to having only two possible
directions. Take the example of the person sitting in a train moving east. If we choose east as the positive direction and

Earth as the reference frame, then we can write the velocity of the train with respect to the Earth as v→ TE = 10 m/s i
^

east, where the subscripts TE refer to train and Earth. Let’s now say the person gets up out of her seat and walks toward
the back of the train at 2 m/s. This tells us she has a velocity relative to the reference frame of the train. Since the person is

walking west, in the negative direction, we write her velocity with respect to the train as v→ PT = −2 m/s i
^

. We can add

the two velocity vectors to find the velocity of the person with respect to Earth. This relative velocity is written as

(4.33)v→ PE = v→ PT + v→ TE.

Note the ordering of the subscripts for the various reference frames in Equation 4.33. The subscripts for the coupling
reference frame, which is the train, appear consecutively in the right-hand side of the equation. Figure 4.24 shows the
correct order of subscripts when forming the vector equation.

Figure 4.24 When constructing the vector equation, the
subscripts for the coupling reference frame appear consecutively
on the inside. The subscripts on the left-hand side of the
equation are the same as the two outside subscripts on the right-
hand side of the equation.

Adding the vectors, we find v→ PE = 8 m/s i
^

, so the person is moving 8 m/s east with respect to Earth. Graphically, this

is shown in Figure 4.25.

Figure 4.25 Velocity vectors of the train with respect to Earth, person with respect to the
train, and person with respect to Earth.

Relative Velocity in Two Dimensions
We can now apply these concepts to describing motion in two dimensions. Consider a particle P and reference frames S and

S′, as shown in Figure 4.26. The position of the origin of S′ as measured in S is r→ S′ S, the position of P as measured

in S′ is r→ PS′, and the position of P as measured in S is r→ PS.
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Figure 4.26 The positions of particle P relative to frames S

and S′ are r→ PS and r→ PS′, respectively.

From Figure 4.26 we see that

(4.34)r→ PS = r→ PS′ + r→ S′ S.

The relative velocities are the time derivatives of the position vectors. Therefore,

(4.35)v→ PS = v→ PS′ + v→ S′ S.

The velocity of a particle relative to S is equal to its velocity relative to S′ plus the velocity of S′ relative to S.

We can extend Equation 4.35 to any number of reference frames. For particle P with velocities

v→ PA, v→ PB , and v→ PC in frames A, B, and C,

(4.36)v→ PC = v→ PA + v→ AB + v→ BC.

We can also see how the accelerations are related as observed in two reference frames by differentiating Equation 4.35:

(4.37)a→ PS = a→ PS′ + a→ S′ S.

We see that if the velocity of S′ relative to S is a constant, then a→ S′ S = 0 and

(4.38)a→ PS = a→ PS′.

This says the acceleration of a particle is the same as measured by two observers moving at a constant velocity relative to
each other.
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Example 4.13

Motion of a Car Relative to a Truck

A truck is traveling south at a speed of 70 km/h toward an intersection. A car is traveling east toward the
intersection at a speed of 80 km/h (Figure 4.27). What is the velocity of the car relative to the truck?

Figure 4.27 A car travels east toward an intersection while a
truck travels south toward the same intersection.

Strategy

First, we must establish the reference frame common to both vehicles, which is Earth. Then, we write the
velocities of each with respect to the reference frame of Earth, which enables us to form a vector equation that
links the car, the truck, and Earth to solve for the velocity of the car with respect to the truck.

Solution

The velocity of the car with respect to Earth is v→ CE = 80 km/h i
^

. The velocity of the truck with respect to

Earth is v→ TE = −70 km/h j
^

. Using the velocity addition rule, the relative motion equation we are seeking is

v→ CT = v→ CE + v→ ET.

Here, v→ CT is the velocity of the car with respect to the truck, and Earth is the connecting reference frame.

Since we have the velocity of the truck with respect to Earth, the negative of this vector is the velocity of Earth

with respect to the truck: v→ ET = − v→ TE. The vector diagram of this equation is shown in Figure 4.28.

192 Chapter 4 | Motion in Two and Three Dimensions

This OpenStax book is available for free at http://cnx.org/content/col12031/1.10



4.6

Figure 4.28 Vector diagram of the vector equation

v→ CT = v→ CE + v→ ET .

We can now solve for the velocity of the car with respect to the truck:

| v→ CT| = (80.0 km/h)2 + (70.0 km/h)2 = 106. km/h

and

θ = tan−1 ⎛
⎝
70.0
80.0

⎞
⎠ = 41.2° north of east.

Significance

Drawing a vector diagram showing the velocity vectors can help in understanding the relative velocity of the two
objects.

Check Your Understanding A boat heads north in still water at 4.5 m/s directly across a river that is
running east at 3.0 m/s. What is the velocity of the boat with respect to Earth?

Example 4.14

Flying a Plane in a Wind

A pilot must fly his plane due north to reach his destination. The plane can fly at 300 km/h in still air. A wind
is blowing out of the northeast at 90 km/h. (a) What is the speed of the plane relative to the ground? (b) In what
direction must the pilot head her plane to fly due north?

Strategy

The pilot must point her plane somewhat east of north to compensate for the wind velocity. We need to construct
a vector equation that contains the velocity of the plane with respect to the ground, the velocity of the plane
with respect to the air, and the velocity of the air with respect to the ground. Since these last two quantities are
known, we can solve for the velocity of the plane with respect to the ground. We can graph the vectors and use
this diagram to evaluate the magnitude of the plane’s velocity with respect to the ground. The diagram will also
tell us the angle the plane’s velocity makes with north with respect to the air, which is the direction the pilot must
head her plane.

Solution

The vector equation is v→ PG = v→ PA + v→ AG, where P = plane, A = air, and G = ground. From the

geometry in Figure 4.29, we can solve easily for the magnitude of the velocity of the plane with respect to the
ground and the angle of the plane’s heading, θ.
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Figure 4.29 Vector diagram for Equation 4.34 showing the

vectors v→ PA , v→ AG, and v→ PG.

(a) Known quantities:

| v→ PA| = 300 km/h

| v→ AG| = 90 km/h

Substituting into the equation of motion, we obtain | v→ PG| = 230 km/h.

(b) The angle θ = tan−1 63.64
300 = 12° east of north.
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